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ABSTRACT
The Multicast Dissemination Protocol (MDP) provides reliable
multicast file and data delivery on top of the generic UDP/IP
multicast transport.  Early work on MDP was deployed across the
global Internet Multicast Backbone (Mbone) as part of the
publicly available Image Multicaster (IMM) application.  This
paper describes more recent work on MDP resulting in the MDP
version 2 (MDPv2) toolkit.  This recent effort has significantly
modified and generalized the MDP protocol and the associated
software interface. Enhancements made to the protocol are
suitable for a wide range of network environments.  Additionally,
integrated erasure-based repairing improves reliable multicast
efficiency and robustness.  We briefly discuss the protocol design,
general performance characteristics, and ongoing MDP work
including: initial rate-based congestion control design and
results, network simulation and modeling, and asymmetric
satellite operation.

BACKGROUND
A wide variety of applications can benefit from the basic Internet
Protocol (IP) suite multicast model [Deering89] that provides
network layer multipoint delivery of group-addressed packets.
The IP multicast model uses generic IP datagrams as its raw
service and does not provide inherent reliability of data delivery.
IP multicast applications requiring guaranteed delivery need
reliable multicast transport mechanisms. There exists a large body
of past and present ongoing work in network transport methods
for reliable multicast. Some past Naval Research Laboratory
(NRL) work in reliable multicasting included co-development of
version 1 of the Multicast Dissemination Protocol (MDP).  This
earlier protocol was framework was part of the freely available
Image Multicaster (IMM) software deployed and tested over the
Internet Multicast Backbone (Mbone) since 1993 [Macker96a].
This document describes the Multicast Dissemination Protocol
version 2 (MDPv2), research enhancements, and the associated
software toolkit.  The authors intend MDPv2 to replace previous
MDP work and this paper will herein use the term MDP in
reference to MDPv2.

OVERVIEW
A primary design goal of MDP was to develop a reliable, scalable,
and efficient multicast transport protocol for use under a variety
of heterogeneous network architectures.  A secondary design goal
was the seamless integration of novel erasure-based parity
repairing techniques with selective multicast packet
retransmission. Targeted operational factors that were key
considerations throughout the protocol design process included:

• Use in heterogeneous, WAN infrastructures

• Use in mobile and wireless network conditions

• Operation in asymmetric delivery scenarios

• Support for small to large group sizes

• Support for group dynamics

MDP mainly uses selective negative acknowledgement (NACK)
of missing data by receivers (clients) to enforce reliability.  The
NACK approach used is similar to that of earlier MDP work with
the intended purpose of maintaining multicast protocol efficiency
and scalability.  Previous work has shown that reliable, selective
NACK-based multicast protocols are more scalable than those
based on positive acknowledgement (ACK) of received data
[Pingali93].  Furthermore, it is possible to suppress transmission
of redundant NACK transmissions among a group of receivers
using probabilistic techniques as originally designed into MDP or
as done in other reliable multicast protocol work (e.g., SRM
[Floyd95]).

In conjunction with selective NACK, the current MDP protocol
uses a parity-based repairing mechanism based upon packet-level
forward error correction coding concepts [Macker97].  The use of
parity-based erasure repairing for multicast selective
retransmission offers significant performance advantages (such as
in error-prone wireless environments or across scaled WAN
sessions).  In MDP, encoded parity repair packets are normally
sent only in response to repair requests by receivers so the
algorithm adds no additional protocol overhead above pure
selective retransmission methods.  However, the protocol may be
optionally configured to transmit “proactive” repair packets as
part of the original data transmission block.  Protocol performance
features of this nature and the resultant effect on delay and
throughput performance were briefly studied and investigated in
[Gossink98].

The MDP design supports distributed multicast session
participation with little coordination among senders and receivers.
The protocol allows senders and receivers to dynamically join and
leave multicast sessions with a minimal amount of required
overhead for control information and timing synchronization
among participants. As a result of this requirement, MDP protocol
message headers contain some common information allowing
receivers to easily synchronize to sources on a dynamic, ad hoc
basis. In its common mode of operation, the MDP protocol uses
multicast delivery mechanisms for both source and receiver
transmissions, but the protocol permits optional unicast-based
client feedback to MDP data sources.  Optional unicast feedback
may be suitable for use in asymmetric networks or in networks
where only unidirectional multicast routing/delivery service
exists.

Application Issues

Reliable multicast transport protocol design is a rich and growing
area of technology development and a variety of solutions and
performance issues have been widely discussed elsewhere in the
literature [Levine96, Macker96b]. In general, there is no “one size
fits all” solution to reliable multicasting across the complete set of
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application semantics and networking architectures foreseen.
MDP has been initially designed as a reliable multicast bulk
transfer protocol for use in heterogeneous network environments,
but contains enhancements to support the reliable transport of
small, self-contained data messages as well. The generic MDP
protocol toolkit assumes no underlying structure in the network
architecture and typically works in a completely end-to-end
fashion. This does not preclude the adaptation of the protocol to
more structured operation (e.g., reliable multicast tree hierarchy,
etc), but more direct application areas include mobile wireless,
asymmetric satellite, and dynamic, heterogeneous WAN
conditions. MDP has been designed to be tolerant of poor timing
estimations that might occur in dynamic conditions (e.g., mobile
and wireless networks).  In addition, the protocol design is robust
under severe packet loss, reordering, and large queuing or
transmission delays.

Figure 1: Screenshot of MDP-based browser client used in
Worldwide Internet MBone Test

As mentioned in the introduction, MDP has undergone extensive
use on the worldwide Internet MBONE.  Higher layer
applications demonstrated with the protocol toolkit have included
web content multicasting, imagery dissemination, directory
replication, generic multicast file transfer, and the integration into
distributed situational awareness applications.  The use of the
MDP Application Programming Interface (API) allows
applications to use and control protocol features. The present
software includes an operational, self-contained basic multicast
file transfer application (e.g., tkMDP and/or winMDP) that works
with standard web browser and uses the MDP API.   Software
designers can use the API interface for fine control of the protocol
metrics, status, and operation from upper layer applications.  The
software has been developed to work under Win32 Operating
Systems (e.g., Win95,Win98, WinNT) and a variety of UNIX
platforms (e.g., Linux, Solaris, NetBSD, IRIX, HPUX).  Figure 1
is a screenshot of MDP providing web-based hypertext content
and imagery during worldwide Internet MBone testing using
tkMDP client and Netscape as a content viewer (winMDP
operates with Netscape or Internet Explorer).

MDP PROTOCOL OPERATION
This section provides a brief overview of MDP operation.  Due to
space limitations, detailed protocol discussion will be sparse and
the interested reader is referred to additional documentation and
updates [see http://manimac.itd.nrl.navy.mil/MDP].

We begin by describing the makeup of an MDP reliable multicast
session.  At a basic level, participants exchange User Datagram
Protocol (UDP) packets over an Internet Protocol (IP) network on
a common, pre-determined address and port number, and this
defines an MDP protocol session.  Generally, MDP session
participants exchange packets on a common IP “multicast” group
address, but point-to-point unicast address transport sessions are
also possible as is the use of optional unicast feedback. Multiple
MDP sessions may simultaneously exist on different multicast
addresses and/or port numbers.  While the MDP implementation
allows for multiple senders within the context of a single MDP
session (i.e. many-to-many operation), a single sender with
multiple receivers will be assumed in the remaining discussion
here.  Figure 2 depicts the general relationship of the sender and
receivers and summarizes the types of messages generated by
each.

Sender

Receivers

Data & 
Com mands

NACKs  & 
Responses

Figure 2: MDP Group Members and Messages

An MDP sender primarily generates messages of type
MDP_DATA and MDP_PARITY to carry data content and
related parity-based repair information for the bulk data (or file)
objects being transferred. MDP_PARITY information is usually
sent only on explicit repair demand, but the protocol
implementation also supports optional “proactive”
MDP_PARITY, which is sent with the initial data transmission.
Another sender message of type MDP_INFO is also defined and
used to carry optional context information for a given transport
object.  A sender generates messages of type MDP_CMD to
perform certain protocol operations such as end-of-transmission
indication, object flushing, round trip time estimation, optional
positive acknowledgement requests, and session squelch
commands.

An MDP receiver generates messages of type MDP_NACK or
optionally MDP_ACK in response to transmission periods and/or
commands from a sender.  The MDP_NACK messages are
generated in response to detected data transmission losses.
Sequencing information is used to detect loss and is embedded in
the all transmitted packets from the sender.  As mentioned, MDP
does not require the use of positive acknowledgements, but
MDP_ACK messages are defined and optionally used to meet
potential application requirements for object receipt bookkeeping
and active congestion feedback in future algorithms.

Server Transmission

In the current MDP implementation, protocol activity within a
session is initiated by the transmission of data by a source node.
Session data is comprised of serialized segments of objects
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enqueued for transmission by the source application.  The
transmission rate and the format of data content of an MDP object
is determined by several source-based protocol parameters.  The
transmit_rate parameter governs the peak rate data is transmitted
by a session participant in units of bits per second.  The multicast
transmission rate by the source, including the data, repairs, and
commands, is upper bounded by this parameter.  Dynamically
adjusting this parameter supports implementation of dynamic,
rate-based congestion control as will be described later in this
paper. The segment_size parameter determines the maximum
message payload size the source uses for packet transmissions.
Data object fragmentation and re-assembly is provided based
upon this parameter.

The MDP source application has the option of setting and
advertising a small amount of "out-of-band" information (info) for
each object enqueued for transmission.  For an example of how
this may be used, consider a file transfer application where
MIME-type information and/or name identification for file
content might be embedded in the info portion of an MDP
transport object.  At present, the amount of info may be up to
segment_size bytes according to the server settings.  Thus the info
associated with an object is transmitted as a single MDP message.
Thus MDP_INFO packets provide an alternative means to provide
reliable multicast data that is not of a bulk nature (e.g., small data
objects that fit into a single segment size packet).

The block_size and max_parity parameters used during a session
affect how the server calculates, maintains, and transmits parity-
based repair messages.  The MDP software release presently uses
shortened, Reed-Solomon encoding to construct repair segments
based on a block of data segments.  The block_size parameter
corresponds to the number of MDP_DATA messages per Reed-
Solomon encoding block while the max_parity parameter
corresponds to the number of repair (MDP_PARITY) segments
the source calculates and maintains per block.

Client Reception and Synchronization

Upon reception of MDP_INFO or MDP_DATA messages from a
new session source, an MDP client will "synchronize" with a
source by beginning to maintain state on the source using the
object segmentation and encoding parameters and current
transmission sequencing information embedded in the received
messages.  For this reason, certain information is embedded in all
MDP_INFO, MDP_DATA, and MDP_PARITY messages
transmitted by the source.

Client NACK Process

Once a client "synchronizes" with a server, it begins tracking the
sequence of transmission using the object_id and offset fields
contained in the data and commands sent by the server.  If the
client detects missing data from the server at the end of an
encoding block, end of an object transmission, or upon receipt of
an MDP_CMD_FLUSH command, it initiates a process to request
repairs from the server.  Note that the end-of-block or end-of-
object boundaries are detected either explicitly by presence of the
MDP_FLAG_BLOCK_END flag in a received message or
implicitly by the receipt of a message for an object or encoding
block beyond the last incompletely received block.

To initiate the repair request process and to facilitate the
suppression of redundant NACK transmission, clients use a
random hold-off timer to delay repair requests.  Thus, if another

NACK for the same (or more) repair information (or the repair
information itself) arrives before the timeout ends, the client
suppresses its transmission of an MDP_NACK message.  Note
that after transmission or suppression of the NACK occurs, an
additional timeout period is used before reinitiating the same
repair request attempt (this additional timeout allows the source
time to provide a group repair response to the previous request).

Server NACK Aggregation and Repair
Upon receipt of an MDP_NACK from a client, the server parses
and tracks the Repair Request data and begins a hold-off timeout
period before responding to pending repair requests.  This allows
the source to receive and aggregate multiple Repair Requests from
other clients.  Note that during this repair response hold-off time,
the server continues to transmit data for new or other pending
objects.  The exception to the hold-off timeout is that
retransmission of MDP_INFO messages occurs immediately upon
receipt of the MDP_NACK message.  Note, however, that repeat
retransmission of duplicate MDP_INFO is restricted to a
maximum of once per timeout period.  The reason a server
retransmits the MDP_INFO repair quickly is because there is no
need to aggregate multiple repair requests for maximum
efficiency as when handling bulk data control.  This added
responsiveness to the repair cycle for MDP_INFO messages is
potentially useful in the context of reliable multicast session
control or for certain types of multicast application data (e.g.,
situational awareness).

The MDP protocol attempts to maximize its use of parity
segments it has calculated for repair transmissions.  For example,
if during an initial repair cycle for an object, receivers request a
portion of the available parity segments, the server uses parity
segments from any remaining unused portion for subsequent
repair cycles in the same encoding block.  There is a significant
gain to this approach as the client parity decoding process fills
missing data segments (erasures) with any combination of the
same number of, but different, parity segments.  Thus, when
reliability requires multiple repair cycles (more than one repair
attempt) to complete an encoded object block, receivers are freed
from the difficulty of tracking and requesting explicit sequences
of parity segments.  Given a sufficient number of parity segments
calculated by a source and nominal packet loss, sources generally
never need to send the same segment twice, thus maximizing the
use of the parity information and minimizing the maintenance of
redundant data requests amongst receivers.

Positive Object Acknowledgement Process

In addition to its pure NACK-based mode of operation, MDP
provides an optional mode for a source to request positive
acknowledgment (ACK) or receipt of individual transport objects
from a specific set of receivers in the group.  The list of receivers
providing receipt acknowledgement is determined by the server
application with a priori knowledge of participating nodes and/or
by receivers who indicate an ACKing status with a flag in their
MDP_REPORT messages.  Positive acknowledgment can be
requested for all transport objects sent by the server or may be
applied at certain "watermark" progress points in the course of
transmission of a series (stream) of transport objects.
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Silent Receiver Operation

MDP provides some useful protocol features for emission
controlled (EMCON), or "silent" client operation.  When it is not
possible or desirable for the client nodes to transmit, by any
means, messages back to the server node or if delivery delay is of
paramount concern the protocol can provide proactive parity data
for more effective unidirectional repairing.  This is an optional
feature the protocol provides through the auto_parity parameter.
The auto_parity feature of the server transmission sequence
provides a percentage of parity repairing packets with the forward
multicast data stream.  Additionally, clients can combine the
information from multiple repeat transmissions of transport object
data into a complete object.  The MDP API provides support for
basic EMCON modes of operation. The MDP Toolkit is currently
being refined in this area and is anticipated to provide support for
different, application-defined EMCON concepts of operation in
the future.

SOME TEST RESULTS AND DISCUSSIONS
Numerous live tests have been conducted and empirical evidence
has been gathered regarding various aspects of MDP performance
over the last few years.  In this section, we discuss a few
experiments and summarize results.

An earlier paper [Macker97a] presented analytical results
predicting significant protocol improvements in efficiency for
NACK-based reliable multicast when using proposed parity
packet repairing methods.  MDP now provides an implemented
model of that proposal and an example empirical study was
performed using protocol parameters similar to those used in the
earlier analytical study.  The test included one multicast source
and twenty independent multicast receivers.  The source used a 20
packet per block coding boundary and a ten-percent independent
packet loss rate was generated at the receivers.  Payloads were
1024 bytes with a constant transmit rate of 9600 bits per second
was used.  In conclusion, 122 files of around 62 Kbytes were
reliably transported with results given in Table 1.

Table 1: MDP Parity Repairing Experiment

MDP Trial
Summary

No Parity Used Parity Used

Session Transfer
Time

3 hours, 44
minutes, 38

seconds

2 hours, 16
minutes, 54

seconds

Total Data/Repair
Transmissions

7447 Data + 8045
Repair = 15492

7447 Data + 1982
Repair =  9429

Total Client
NACK

Transmissions
6111 1726

Total Server Data
Transmitted

16,083,804 bytes 9,719,414 bytes

The results in Table 1 illustrate several things.  First, total
required session transfer time is significantly reduced (completed
in 61% the time of using no parity repairing).  Second, overall
protocol message transmission requirements are significantly
reduced.  Message reduction occurs on both the server (75%
fewer repairs) and the receiver side (72% fewer NACKs).

MDP was also demonstrated within an asymmetric, high-speed
Urban Warrior experiment during 1998.  MDP was shown to
perform with high robustness and throughout the test and results
were reported in a MILCOM 98 paper [Krout98].  These tests are
continuing and further enhancements to MDP for use in
asymmetric network architectures are being considered.

RELATED WORK AND ONGOING ISSUES
This section describes ongoing MDP related research and design
efforts.  While MDP is presently an available reliable multicast
software toolkit, past and ongoing research has been conducted
using MDP as a framework.

UC Berkeley/VINT ns Network Simulator Model

A complete model of the MDP protocol has been developed in the
ns simulation environment and is supporting ongoing studies of
MDP performance and continuing research.  The following areas
are presently being studied and evaluated: MDP congestion
control enhancements, TCP friendliness issues, wireless and
mobile network performance, reliable multicast and traffic
management [Macker97c], general protocol scalability and
performance under various networking architectures.

Rate-based Congestion Control

At NRL, the ns simulation model is being used to research and
develop new rate-based congestion control enhancements to
MDP.  This general area of rate-based congestion control for
reliable multicast presents numerous technical challenges
[Whetten98].  TCP friendliness, of some form, should be
demonstrated before reliable multicast solutions are considered
for general Internet protocol standardization [Mankin98].  Our
initial approach is to investigate end-to-end extensions of the
MDP protocol engine to provide congestion sensitive rate-control
based loosely upon a steady state TCP model reported in
[Padhye98].  If successful, this approach gives MDP a basis for
TCP friendliness across a variety of conditions.  At the time of
writing, we have an initial integrated algorithm working and are
actively testing stability, robustness, and TCP friendliness.  Our
initial design uses multicast group loss and round trip time (RTT)
estimation schemes to estimate worst path model friendliness
[Whetten98] among the receiver group.  Linear increase and
exponential decrease is used to adapt the rate dynamically
according to a goal rate calculated from the steady state TCP rate
model.

Previous work at USC and HRL [DeLucia98] used MDP as a
framework to demonstrate rate-based congestion control and TCP
friendliness using the concept of representatives.  In this work,
representatives among the multicast receiver set were dynamically
elected based upon loss reporting and these designated receivers
would provide more proactive feedback to assist in a rate-based
congestion control algorithm.  In our present design, we have
retained a concept of “designated receivers” to improve scalability
but we deploy algorithms using the worst path estimation based
upon a steady state TCP transfer function.

Figure 3 provides a performance snapshot of TCP and MDP
dynamically sharing a 64 kbps bottleneck link.  These results were
obtained by simulating TCP unicast and MDP multicast sessions
sourced from separate 10 Mbps links (e.g., Ethernet LAN) jointly
traversing a bottleneck link of 64 kbps (e.g., satellite link).  The y-
axis shows the throughput from each transport flow across the
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bottleneck link over the total 40-minute  test period.  The initial
results here show that MDP exhibits reasonable dynamic fairness
with a simultaneous TCP session over the bottleneck link. Other
recent tests of alternate scenarios (e.g., bandwidth, dynamics)
show similar behavior of relatively fair dynamic sharing and good
stability.  While the work is ongoing to refine our initial dynamic
algorithm and evaluate more complex scenarios, these initial
results are highly encouraging.

Figure 3: Example End-to-end Rate-Based Congestion
Control Results and TCP friendliness

The challenge of developing an MDP rate-based congestion
control approach has been to retain much of the scalability and
efficiency of an existing NACK-based reliable multicast design
while obtaining reasonable feedback and group estimates of loss
and RTT for use in the TCP rate friendly calculations.  Future
work is planned to investigate the use of router assisted messaging
(e.g., early congestion notification (ECN)) to further ease the
burden of end-to-end multicast congestion control implementation
and performance. The use of enhanced traffic management can
also provide additional support to congestion control approaches
and support more robust operation in wireless network scenarios.
While there are many ongoing research aspects to reliable
multicast congestion control, we are encouraged by the initial
results achieved with a working dynamic end-to-end
implementation based upon MDP.

Congestion control enhancements are being developed and
integrated into the existing MDP implementation as options.  It is
envisioned that many scenarios may continue to use rate-
controlled MDP functionality without dynamic congestion control
enhancements.  Future releases of the protocol toolkit with offer
the option to run with or without dynamic congestion control
features.

SUMMARY
In conclusion, we have presented an overview of the MDP
reliable multicast protocol and toolkit.  We explained some of the
history and design approach taken in MDP, including the use and
integration of parity-based repairing schemes.  A brief overview
of MDP message types, modes of operation, and protocol
behavior was provided.  After the protocol description, we
presented empirical results demonstrating overhead reduction and
delay improvements resulting from MDP multicast parity-based
repairing.  These results compare well with previous analytical
projections [Macker97a].  Finally, early NRL research and results
regarding rate-based multicast congestion control were discussed.
End-to-end “TCP friendly” behavior has been demonstrated and
initial results from simulation studies are encouraging.
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